SiQAD

Walus Lab

Dec 02, 2020

1 Installation

1.1 Windows .
1.2 Linux . ..
1.3 macOS . .

2 Basic Tutorial

GETTING STARTED:

2.1 Common Operations o v v vttt e e e e e e e e e e e e e e e e e

2.2 ORpog Ground State Finding Example o o
3 GUI Overview

3.1 Design Panel Modes and Features

3.2 SimulationJob L. e e

3.3 Simulation Visualization L e e e e e

3.4 Exporting and Importing Simulation Results L 0 o oL

4 Ground State Charge Config Finders
4.1 Ground State Model
4.2 Inter-plugin Transfer e

5 Charge Dynamics

5.1 HoppingDynamicCs 0 o e e e e e e e e e e e e e

6 Electrostatic Landscape

6.1 PoisSolver
7 Coming Soon
8 Bibliography
9 Indices and tables

Bibliography

N B WW

RN |

13
14
15
16
16

17
17
19

21
21

23
23

25

27

29

31

SiQAD

SiQAD (Silicon Quantum Atomic Designer) is a CAD tool that enables the design and simulation of silicon dangling
bond (DB) circuits through an intuitive graphical user interface (GUI) and a modular simulation back-end. The tool
currently offers simulators that predict ground-state and dynamic electron configuration of given DB configurations,
and electrostatics simulation given electrode layouts. There are a few key resources available:

¢ Feel free to join our official Slack team for SiQAD-related discussion and support!

* Please read the SIQAD publication on IEEE Transactions on Nanotechnology (open access) for a detailed in-
troduction to the tool and simulators. A separate conference paper detailing our electrostatic landscape solver,
PoisSolver, is also available. If you would like a detailed discussion on platform technology from the physical
implementation level to prospective applications in machine learning acceleration, please check out Samuel S.
H. Ng’s Master’s thesis.

¢ Please read the Basic Tutorial to familiarize with basic SIQAD features through a step-by-step tutorial.

* The Walus Lab website contains information about us and other projects that we work on.

GETTING STARTED: 1

https://join.slack.com/t/siqad/shared_invite/zt-enavwvlg-anRYYpslNbpxXI96zx4Wxg
https://ieeexplore.ieee.org/document/8963859
https://ieeexplore.ieee.org/document/9183710
https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0392909
https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0392909
https://waluslab.ece.ubc.ca/siqad/

SiQAD

2 GETTING STARTED:

CHAPTER
ONE

INSTALLATION

First, we need to make this tool available on your machine:
o Windows
e Linux

e macOS

Note: The electrostatic landscape solver, PoisSolver, is currently only available on Ubuntu. It is unavailable on other
platforms for various reasons:

¢ Windows pre-compiled binaries: PoisSolver’s dependent package, FENiCS, does not offer native Windows
support. Use Windows Subsystem for Linux instead.

* macOS: Currently untested.

If you are just getting started with SIQAD, there is still much to explore in SimAnneal and HoppingDynamics to get
you started. However, advanced designs involving clocking electrodes will certainly require the use of PoisSolver.

1.1 Windows

1.1.1 Pre-compiled Binaries

Pre-compiled binaries are available for Windows 10. They can be downloaded on the official SIQAD GitHub releases
page with both x86 (32-bit) and x86-64 (64-bit) builds available. For now, the binaries are packaged in portable form;
installer support will be added in the future.

See the note at the top of the page regarding the lack of PoisSolver support in the pre-compiled binaries as well as
possible remedies.

Some of the bundled simulators require a Python interpreter (official download page). Supported versions include
Python 3.5 to 3.8. Python 3.7 acquired from Windows Store doesn’t seem to work for us, but 3.8 seems to work.
For now, we recommend sticking with acquiring Python from the official website.

Additional packages that are needed by Python-based plugins are acquired automatically through pip and installed
into virtual environments via venv such that they do not interfere with system Python packages. Both pip and venv
come with a standard Python installation.

https://fenicsproject.org/
https://github.com/siqad/siqad/releases
https://github.com/siqad/siqad/releases
https://www.python.org/downloads/

SiQAD

1.1.2 Windows Subsystem for Linux

Windows Subsystem for Linux (WSL) enables the execution of Linux binaries within Windows provided that you
have an up-to-date copy of Windows 10. You may refer to the official guide from Microsoft for enabling WSL. We
recommend the Ubuntu 20.04 LTS image, but Ubuntu 18.04 LTS is also supported.

You will also need an X11 server to display graphical applications. We have tested Xming and it works, but other
alternatives out there should also be functional.

After setting up WSL, you may refer to the Linux section for either downloading SiIQAD from the PPA or compiling
the binaries from source within the WSL environment.

1.2 Linux

A Ubuntu PPA is available containing the latest stable version. If you prefer compiling from source or using a devel-
opment version, you would have to build from source.

1.2.1 Ubuntu PPA

This applies to Ubuntu 18.04 LTS and Ubuntu 20.04 LTS.
Add the SiQAD PPA to Ubuntu and install:

sudo add-apt-repository ppa:sigad/ppa
sudo apt update
sudo apt install sigad

You may then invoke SiQAD from the terminal:

sigad

Future updates will add appropriate desktop icons.

1.2.2 Building from Source

Prerequisites

This tutorial works on both Ubuntu 18.04 LTS and Ubuntu 20.04 LTS. Install the following prerequisites:

general dependencies

sudo apt install python3-pip python3-tk python3-venv make gcc g++ gtchooser gtb-
—default libgt5svg5-dev gttools5-dev gttools5-dev-tools libgt5charts5 libgt5charts5-
—dev libboost-dev libboost-filesystem-dev libboost-system-dev libboost-thread-dev,,
—libboost-random-dev zliblg-dev pkg-config cmake git

poissolver dependencies

sudo apt install python3-dolfin gmsh

On non-Debian systems, packages equivalent to the ones listed above will be needed.

Additional packages that are needed by Python-based plugins are acquired automatically through pip and installed
into virtual environments via venv such that they do not interfere with system Python packages. They are provided
by the listed prerequisites python3-pip and python3-venv.

4 Chapter 1. Installation

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/en-us/p/ubuntu-2004-lts/9n6svws3rx71?activetab=pivot:overviewtab

SiQAD

Scripted Compilation

To quickly test out the tool without installing SIQAD into your system, you may use the quick compilation script with
the following instructions.

Clone the repository (including submodules) onto your local machine:

git clone --recurse-submodules https://github.com/sigad/sigad.git

Run the make_everything_dev script from the project root:

chmod +x make_everything_ dev
./make_everything_dev release notest

(When debugging, change the release argument to debug. When developing, exclude notest.)

If the make_everything_dev script returns with errors, please jump to the Step-by-step Cmake Compilation
section and try again. If compilation is successful, you should be able to invoke the binary by running:

./build/release/siqgad

from the project root. If you’ve compiled using the debug flag, then the binary is located at . /build/debug/
siqgad instead.

If you would like to be able to invoke SiQAD from anywhere in your system when you’re logged in, make a symbolic
link from one of the directories in $PATH to the SiIQAD binary. For example, if the binary exists in ~/git/sigad/
build/release/sigadandif ~/.local/bin isin your $PATH, you may create a symbolic link by:

1ln -s ~/git/sigad/build/release/sigad ~/.local/bin/sigad

After this, you will be able to invoke SiQAD simply by running sigad as your logged in user.

Step-by-step CMake Compilation

Clone the repository (including submodules) onto your local machine:

git clone --recurse-submodules https://github.com/sigad/sigad.git

In the project root, create a build directory and run cmake:

mkdir build && cd build
cmake —-DCMAKE_INSTALL_PREFIX=./sigad -DCMAKE_BUILD_TYPE=Release

Set -DCMAKE_INSTALL_PREFIX to your preferred installation path. If it is not set, the default prefix will be set to
/opt/sigad.

If CMake finishes successfully, compile and install:

make
make install

For multi-threaded compilation, add the —3 N flag to make where N is the number of cores you want to use. make
install copies the appropriate files to the path set in CMAKE_INSTALL_PREFIX in the cmake command of the
previous step, and may require sudo privileges depending on the prefix that you’ve chosen.

To invoke SiQAD, enter the full path to the binary (e.g. /opt/sigad/sigad if CMAKE_INSTALL_PREFIX was
set to /opt/sigad). If you would like to simply invoke SiQAD without having to enter the full path, some of the
options include:

1.2. Linux 5

SiQAD

* Adding the installation prefix to your SPATH;

* Making a symbolic link from one of directories in SPATH to the binary. For example, 1n -s /opt/sigad/
sigad "${HOME}/.local/bin/sigad" if CMAKE_INSTALL_PREFIX was setto /opt/siqgad.

1.3 macOS

We do not have an official compilation guide for macOS yet. However, we have had success compiling SiQAD on
macOS in the past, albeit haphazardly. We recommend following the Step-by-step CMake Compilation tutorial for
Linux and adapt/debug along the way.

6 Chapter 1. Installation

CHAPTER
TWO

BASIC TUTORIAL

Here, a step-by-step tutorial making use of basic SIQAD design features and ground state charge simulation tools is
provided. After going through this tutorial, feel free to experiment with our previously published design files from
[NRC+20].

2.1 Common Operations

First, let’s go over some common GUI operations:
* Document saving and loading can be accessed through the “File” entry on the menu bar.

« When Select Tool X is active, common operations such as cut, copy, paste, and delete are present either through
keyboard shortcuts or through the right-click menu.

* DBs can be grouped together by Ctrl+g for convenient group manipulation; they can be ungrouped by
Ctrl+Shift+g. Grouped DBs are called Aggregates.

2.2 ORpyoq Ground State Finding Example

This is a basic tutorial which aims to walk through a simple silicon dangling bond (DB) design and simulation use
case. This knowledge is sufficient to get researchers started with DB gate and circuit design. We assume that you have
already acquired SiQAD on your machine; if not, please refer to the preceding document.

If you are confused at any step, please consult the documents under the Details heading on the sidebar. Failing that,
feel free to reach out to the developers: siqaddev@ gmail.com

In this example, we recreate ORyjoq from [NRC+20]. The expected charge configurations are:

DB pairs

-

;
LR P
69 00

9
lllllio.hIII-IIIII-.II-GII-IIII.Ill.l--llll.IIIII

Out ™0
° ® o °

an Lattice sites @ DB-
1 nm o DBO ® Degenerate DB-

1. Using the DB Gen Tool » on the side toolbar, draw the ORy;,q00 configuration in the design panel:

https://github.com/samuelngsh/published-resources/
mailto:siqaddev@gmail.com

SiQAD

8 Chapter 2. Basic Tutorial

SiQAD

2. We would like to find the ground state charge configuration for this DB layout. Click on New Job ® (hotkey:
Ctrl+r) in the top toolbar to access the Job Manager. Double click on ExhaustiveGS on the Engine List to
add it to the Job Step List. The Job Manager should now look like this:

= New Job Engine List Job Steps
Job
View Jobs i
¥ Filter ¥
B {:J Ll Job name
PaisSolver
SimAnneal Exhaustivess P —
HoppingDynamics Inclusion area | IncludeEntireDesign v

Plugin Invocation

Invecation command format (@) Presets .

@PYTHON@
@BINPATH@
@PROBLEMPATH@
@RESULTPATH®@ b/

Plugin Runtime Parameters

Thread count -1
Relative permittivity 5.60
mu (0/- transition level - Fermi level) -0.25
Debye length (nm) 5
Auto-fail DB count (read hovertip) 15

Result scope Ground state only \

Close Run

Note: ExhaustiveGS exhaustively searches through all possible charge configurations to find the ground state charge
configuration. It scales at O(N?) where N is the number of DBs. Do not use it for large (~15+ DBs) problems.

3. Without altering any other settings, run the simulation. The resulting simulation result should be identical to the
following figure. At the right, the Sim Visualize %l panel containing information related to the simulation also
appears. When the Sim Visualize *li panel is active, Simulation Visualization Mode is also active in the design
panel which prevents design changes to be made.

Note: Since this is a simple simulation, you should receive the result almost instantaneously on a modern machine.
If this is not the case, view the Job Logs °& and check the latest log (top) for the potential cause.

4. Close the Sim Visualize *ib panel in order to exit Simulation Visualization Mode (hotkey: v). Add an input
perturber to create the 10 input combination, and run the simulation again with identical settings. The resulting
charge configuration disagrees with the expected configuration, we are one negative charge short:

5. Revisit the Plugin Runtime Parameters in the Job Manager and notice that the mu value (corresponding to p— in
[NRC+20]) is —0.25 meV, whereas [NRC+20]’s ORpjoq simulations had used p— = —0.28 meV. Let’s change
the mu value to —0.28 in Plugin Runtime Parameters:

6. The simulation result now aligns with the expected configuration:

From here, you can experiment with SimAnneal, a ground state charge configuration finder which implements a
custom simulated annealing algorithm. The default settings generally work well for DB layouts with < 80 DBs, the
p— and “Instance count” values are generally the ones that are modified. Please refer to Ground State Charge Config
Finders for more information related to SimAnneal.

2.2. ORpog Ground State Finding Example 9

SiQAD

10 Chapter 2. Basic Tutorial

SiQAD

= New Job Engine List Job Steps

Job
View Jobs ;
Filter =
- q}‘ * * Job name
PaisSolver
SimAnneal M v Auto job name

HoppingDynamics Inclusion area | IncludeEntireDesign

Plugin Invocation
Invocation command format (@ Presets _

@PYTHON@ 3
@BINPATH@

@PROBLEMPATH@

@RFSULTPATH®@ b

Plugin Runtime Parameters

Thread count -1
Relative permittivity 5.60
mu (0/- transition level - Fermi level) ‘—0.28|
Debye length (nm) 5
Auto-fail DB count (read hover tip) 15

Result scope Ground state only >

Close Run

2.2. ORpog Ground State Finding Example 11

SiQAD

12 Chapter 2. Basic Tutorial

CHAPTER
THREE

GUI OVERVIEW

File View Tools Help
o0 oo oo
DRhsEO

Layer Manager =)

Active layer: Metal

Metal @

I:D A (-I-) >4

AFM @

Lattice @ Misc @ Surface @

Advanced |Add Layer

4

> Item Manager = Layer Manager
Terminal Dialog ®® Information Panel =)
"Save: Write completed for /tmp/sigad_samt Itosave/instance-220: ve-L.xml" - Cursor (nm) (7.51,0.32)
"Autosave complete" Zoom 0
"selecting dbgen tool"
"selecting select tool" Selected DBs 0
"selecting electrode tool" Selected rect 0.00 nm x 0.00 nm
"Beginning load from :/properties/electrode.xml"

"Finished loading from :/properties/electrode.xml"
"selecting select tool"

The SiQAD GUI consists of a few key components:
* Design panel in the center showing DBs in white, lattice sites in gray, and an electrode in gold.
» Top menu bar containing standard application toggles and features.

* Top toolbar providing access to key manager widgets, panels, and modes:

New Job *&: Open the job manager dialog for creating new simulation jobs.

Job Logs *B: View job logs in the job manager.

Sim Visualize *ib: Toggle the simulation visualization panel for accessing simulation results.

Layer Manager £ Toggle the layer manager panel which enables layer manipulation. Currently most
useful for adding more Electrode layers for multi-layer electrode simulations.

13

SiQAD

— Terminal Dialog - 3 Toggle the terminal dialog which provides real time debug output and accepts SQ-
Commands (to be documented).

* Side toolbar detailed in later section: Design Mode.

¢ Side and bottom docking areas for various manager widgets and panels.

3.1 Design Panel Modes and Features

3.1.1 Design Mode

The following design features can be found in the left toolbar:
« Select Tool X : select graphical objects in the design panel.
* Drag Tool o drag on the design panel to pan the view point.
* DB Gen Tool » : create DBs on the design panel. Hover over the desired lattice site
* Electrode Draw tool & : create electrodes on the design panel.

Right clicking on the design panel reveals common actions such as delete, copy, paste, and more; right clicking on
electrodes further reveal options to alter their electrical properties, color, and rotation.

3.1.2 Screenshot Mode

Screenshot Mode €®) can be activated in the top toolbar or in the “Tools” menu. It changes the design panel to a high
contrast screenshot theme. A pop-up window shows available options for the screenshot, where the user can define
screenshot properties such as the clipping area and scale bar settings. The screenshot output is a vector graphics SVG
image.

‘When Screenshot Mode is active, DB Gen Tool /' and Electrode Draw tool % cease to work.
The following additional design tools can be found in the side toolbar when screenshot mode is activated:

« Screenshot Area Tool €81 : select a region in the design panel to define the screenshot area. If no area is set, the
full displayed region of the design panel is captured.

 Scale Bar Tool r~ : choose a position on the design panel to place the scale bar anchor. The “Show Scale Bar”
option in the screenshot manager must also be enabled for the scale bar to be displayed.

3.1.3 Simulation Visualization Mode

Simulation Visualization Mode is activated automatically when simulation is complete.
‘When Simulation Visualization Mode is active, DB Gen Tool 7 and Electrode Draw tool & cease to work.

Screenshot Mode &) can be activated concurrently with Simulation Visualization Mode to take screenshots of simu-
lation results.

For guidance on selecting and interpreting simulation results, please refer to the Simulation Visualization section.

14 Chapter 3. GUI Overview

SiQAD

3.2 Simulation Job

In SiQAD, simulators are implemented as plugins. Any interaction with plugins is treated as a Job. Simulations can
be invoked through the Job Manager, which is accessed through the New Job *» button in the top toolbar.

Below is a screenshot of the Job Manager interface:

New Job Engine List Job Steps .
View Jobs Filter o Job
-
PoisSolver Job name
SimAnneal

Auto job
ExhaustiveGS HoppingDynamics V| Auto job name

HoppingDynamics Inclusion area | IncludeEntireDesign v

Plugin Invocation

Invocation command fermat Presets,.

@BINPATH@
@PROBLEMPATH@
@RESULTPATH@

Plugin Runtime Parameters

Anneal cycles
Instance count

Relative permittivity

mu (Isolated E_{(0/-)} - E_{Fermi})

Debye length (nm)
Hop attempt factor

10000

5.60
-0.25
5

5

Initial temperature (K) 500

Minimum annealing temperature (K) 2

Temperature 1/e point 0.09995

Temperature schedule Exponential v

Initial V_freeze -1.0

Maximum V freeze 4.0 ¥4

‘ Run ‘ Close

Four panes are shown:
* Job Manager Actions: set up a new job or view previous jobs.
* Engine List: Available simulation plugins, double click to add to Job Step List.
* Job Step List:
— Chosen plugins that execute in sequence in the order shown.

— The order of job steps can be manipulated via the buttons at the top of the pane; job steps can also be
removed.

¢ Job and Plugin Details:
— The job name can be configured or be left to auto generation. Auto job names use the invocation time.

— Inclusion area allows users to choose whether to include the entire design in the simulation or include only
selected items.

— Plugin Invocation settings allow the plugin invocation command to be altered. Each parameter must be
written in a separate line. Presets are available for some engines. The following special variables are
replaced at invocation:

* @PYTHONQ@: Python path identified by SiQAD, can be manually configured in Tools -> Settings.

* @BINPATH@: Absolute path to the plugin binary (or script file), defined in the » . sgplug or *.
physeng file in the plugin’s directory.

* QPHYSENGPATHQ@: Absolute path to the directory containing the * . sgqplug or * .physeng file.

3.2. Simulation Job 15

SiQAD

@PROBLEMPATHQ@: Absolute path to the problem description file that will be exported by SiQAD for
the plugin to consume.

*

*

@RESULTPATH@: Absolute path to the result file which SIQAD expects the plugin to generate.

*

@JOBTMP@: Absolute path to the temporary path allocated for the job.

@STEPTMP@: Absolute path to the temporary path allocated for the specific job step, normally a
subdirectory of @ JOBTMPQ@.

*

— Plugin Runtime Parameters allow parameters pertaining to the plugin to be altered.

3.3 Simulation Visualization

Todo: TBA

3.4 Exporting and Importing Simulation Results

After performing a simulation, you can export the results for archival and import them for future inspection. Simulation
jobs may include one or multiple job steps; both cases can be handled by the exporter. Results can either be exported
from the Sim Visualizer (when the job is being displayed) or from the Job Logs ‘" page in the Job Manager. Exported
results can be imported either from Job Logs *@ or File -> Import Job Results.

It is a good idea to export simulation results of novel circuit designs for archival purposes especially if you have
eventual publication in mind.

16 Chapter 3. GUI Overview

CHAPTER
FOUR

GROUND STATE CHARGE CONFIG FINDERS

4.1 Ground State Model

Todo: A general discussion of the ground state model will be made available here in the near future. The model is
discussed in [NRC+20] in the context of SimAnneal, which is equally informative.

4.1.1 ExhaustiveGS

ExhaustiveGS assesses all possible charge configurations in any arbitrary DB layouts with the ground state model. It
scales at O(IN3) where N is the DB count, which makes it prohibitively costly to run for larger DB problems. As a rule
of thumb, we advise avoiding ExhaustiveGS for problems with more than ~15 DBs but actual performance depends
on your machine.

4.1.2 SimAnneal

SimAnneal is a heuristic algorithm for simulated annealing which attempts to find the ground state metastable charge
configuration for given DB layouts. For details on the implementation and associated models, please refer to Section
IV.A. in [NRC+20]. Here, we focus on the discussion of runtime parameters assuming that you’ve already read that
section of the paper.

Here is a table of configurable SimAnneal parameters and their descriptions:

17

SiQAD

Table 1: SimAnneal Parameters

Vari- Param Name in | Description

able SiQAD

Physical:

s (Exported by SiQAD) All DB locations.

e mu (eV) More negative = more favorable for DB-, see [NRC+20].

€r Relative permittivity Affects electric field strength, see [NRC+20].

ATE Screening distance (nm) | Thomas-Fermi screening distance, see [NRC+20].

prext (Inter-plugin transfer) External potentials, requires inter-plugin transfer.

Simulation:

Ninst Instance count Number of SimAnneal instances to spawn.

Neyeles Anneal cycles Number of annealing time steps per instance.

Ty Initial temperature (K) Initial annealing temperature.

T in Minimum temperature | Minimum annealing temperature.

(K)

Vo Initial V_freeze (eV) Initial V7, see [NRC+20].

V]Z Final V_freeze (eV) Final V, see [NRC+20].

v, V_freeze cycles Normalized time step at which Vy = VJZ and ceases to increase further.

TT, /e Temperature 1/e point Normalized time step at which 7" = %

fhop Hop attempt factor Set the number of attempted hops at each time step to fiop x count of DBO
sites.

Results:

Sresults Result queue size Set the number of charge configurations to return per instance to fiesuis X
N, cycles

The following additional variables are related to schedule restarting. It is still unclear to us whether they offer ad-
vantages that optimizing the annealing schedule doesn’t already offer, therefore they are disabled by default. The
parameters include:

« Strategically reset V_freeze: enable V_freeze reset if simulation seems to be stuck at unstable states for a user-
defined number of cycles after V_freeze has reached the maximum value.

* Reset temperature as well: when resetting V_freeze, also reset the annealing temperature.

* Reset V_freeze: V_freeze value to reset to, leave at —1 for SimAnneal to decide automatically.

 Physical validity check cycles: after V_freeze has reached the maximum value, reset V_freeze if the charge
configurations do not fit metastability criteria for this many cycles consecutively.

Todo:

Include a plot showing some key variables affecting temperature and v_freeze schedules.

4.1.3 QUBO Mapping

Todo: We have attempted to map the ground state model to QUBO. The effort resulted in some success but accuracy
and performance was far behind SimAnneal. More information regarding the QUBO mapping will be provided in the

future.

18

Chapter 4. Ground State Charge Config Finders

SiQAD

4.2 Inter-plugin Transfer

Todo: Workflow for exporting PoisSolver potentials to SimAnneal.

4.2. Inter-plugin Transfer

19

SiQAD

20 Chapter 4. Ground State Charge Config Finders

CHAPTER
FIVE

CHARGE DYNAMICS

5.1 HoppingDynamics

Todo: Documentation pending. For now, please refer to Section IV.B. in the SiQAD publication (open access).

21

https://ieeexplore.ieee.org/document/8963859

SiQAD

22 Chapter 5. Charge Dynamics

CHAPTER
SIX

ELECTROSTATIC LANDSCAPE

6.1 PoisSolver

Todo: Documentation pending. For now, please refer to Section IV.C. in the SiIQAD publication (open access) as
well as pre-print PoisSolver: a Tool for Modelling Silicon Dangling Bond Clocking Networks.

23

https://ieeexplore.ieee.org/document/8963859
https://arxiv.org/abs/2002.10541v1

SiQAD

24 Chapter 6. Electrostatic Landscape

CHAPTER
SEVEN

COMING SOON

Documentation for developers wishing to build upon SiQAD is in progress.

25

SiQAD

26 Chapter 7. Coming Soon

CHAPTER
EIGHT

BIBLIOGRAPHY

27

SiQAD

28 Chapter 8. Bibliography

CHAPTER
NINE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

29

SiQAD

30 Chapter 9. Indices and tables

BIBLIOGRAPHY

[NRC+20] S. S. H. Ng, J. Retallick, H. N. Chiu, R. Lupoiu, L. Livadaru, T. Huff, M. Rashidi, W. Vine, T. Dienel,
R. A. Wolkow, and K. Walus. SiQAD: a design and simulation tool for atomic silicon quantum dot circuits.
IEEE Transactions on Nanotechnology, 19():137-146, 2020. doi:10.1109/TNANO.2020.2966162.

31

https://doi.org/10.1109/TNANO.2020.2966162

	Installation
	Windows
	Linux
	macOS

	Basic Tutorial
	Common Operations
	ORMod Ground State Finding Example

	GUI Overview
	Design Panel Modes and Features
	Simulation Job
	Simulation Visualization
	Exporting and Importing Simulation Results

	Ground State Charge Config Finders
	Ground State Model
	Inter-plugin Transfer

	Charge Dynamics
	HoppingDynamics

	Electrostatic Landscape
	PoisSolver

	Coming Soon
	Bibliography
	Indices and tables
	Bibliography

